End-to-End Autonomous Driving과 관련된 다양한 게시물은Introduction에서 확인하실 수 있습니다. Causal Confusion 모델이 본질적 인과 관계를 학습하지 못하고 비본질적 상관관계(Spurious Correlations)에 의존하는 현상모델이 데이터에서 중요한 요인을 파악하기보다는, 쉽게 사용할 수 있는 shortcut 정보에 지나치게 의존함으로써 발생.자율주행 차량의 현재 행동은 속도나 과거 궤적과 같은 low-dimensional spurious feature와 강하게 연관될 수 있음.End-to-End 모델이 이러한 특징에 의존하게 되면 causal confusion이 발생할 수 있다.이는 모델이 진정한 인과 관계를 학습하지 못하고, 단순히 부차적 패턴에 의존..