연쇄행렬곱셈 문제는 행렬곱의 횟수를 최소로 할 때의 최적 답안과 그 횟수를 구하는 문제이다. 행렬을 곱할 때에는 한 번에 두 행렬끼리만 곱할 수 있는데, 여러 행렬을 곱해 답을 구하는 과정에서, 어떠한 행렬쌍을 먼저 곱하는지에 따라 연산의 횟수가 달라지게 된다. 예를 들어 A는 2x3 행렬, B는 3x5 행렬, C는 5x2 행렬이라고 가정했을 때, ((A B) C)는 50회, (A (B C))는 42회가 나오는 것처럼 괄호의 위치에 따라 연산 횟수가 다르게 나온다. 따라서, 가장 적은 횟수로 최종 행렬곱을 구하는 방법을 구하는 것이 연쇄 행렬 곱셈이다. 이 계산을 하기 위해 일일이 하나하나 곱해가면서 값을 비교해 최솟값을 구한다면, 위에 보이는 식과 같이 기하급수적으로 값이 (시간복잡도가) 커지게 된다...