반응형

closed-loop 3

[E2E 자율주행] (6)-3 Closed-loop: Sensor Simulation / Vehicle Dynamics Simulation / Benchmarks

End-to-End Autonomous Driving과 관련된 다양한 게시물은Introduction에서 확인하실 수 있습니다.Sensor Simulation시뮬레이터에서 image나 LiDAR 스캔 같은 raw data 생성 및 noise와 occlusion 반영한 현실적인 평가Graphics-Based3D environment model과 traffic entity model을 사용하여, 센서에서의 phisical rendering 과정을 근사(approximation)하여 데이터 생성.Ex) image에서 occlusion, shadow, and reflection 등 시뮬레이션.현실감 제한적, 높은 연산 비용 소요, 병렬 처리 어려움.3D model의 quality와 sensor modeling에 ..

[E2E 자율주행] (6)-2 Closed-loop: Parameter Initialization / Traffic Simulation

End-to-End Autonomous Driving과 관련된 다양한 게시물은Introduction에서 확인하실 수 있습니다.Parameter Initialization시뮬레이션 환경에서 초기 parameter가 많아 설계 과정의 복잡성을 해결하기 위한 방법Procedural Generation초기 매개변수를 알고리즘으로 생성하는 방식rule, huristic, randomization을 결합해 다양한 도로망, 교통 패턴, 조명 조건, object placement를 만듦.비디오 게임 및 시뮬레이션에서 널리 사용되며, fully manual design보다 효율적.신뢰성 있는 생성을 위해 algorithm과 parameter의 pre-define 필요시간이 많이 소요되고 전문가의 지식이 필요함.Data-..

[E2E 자율주행] (6)-1 Benchmarking: Real-world / Closed-loop / Open-loop

End-to-End Autonomous Driving과 관련된 다양한 게시물은Introduction에서 확인하실 수 있습니다.BenchmarkingReal-world초기 자율주행 벤치마킹은 실제 환경 평가에서 시작.DARPA자율주행 경주 시리즈.240km의 모하비 사막 경로를 자율적으로 주행.100만 달러의 상금을 걸었으나 성공하지 못함.DARPA Urban Challenge차량이 교통법을 준수하며 장애물을 피하고 96km의 가상 도시 코스 주행LiDAR 센서와 같은 자율주행 기술 발전을 이끌어냄.MCity자율주행차 테스트를 위한 대규모 제어된 실세계 환경을 설립.데이터와 차량 부족으로 인해 학계에서는 엔드투엔드 시스템에 이 환경을 널리 활용하지 못했습니다.산업체는 알고리즘 개선을 벤치마킹하기 위해 실세..